skip to main content


Search for: All records

Creators/Authors contains: "Bowley, Kevin A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The British landscape painter John Constable is considered foundational for the Realist movement in 19th-century European painting. Constable’s painted skies, in particular, were seen as remarkably accurate by his contemporaries, an impression shared by many viewers today. Yet, assessing the accuracy of realist paintings like Constable’s is subjective or intuitive, even for professional art historians, making it difficult to say with certainty what set Constable’s skies apart from those of his contemporaries. Our goal is to contribute to a more objective understanding of Constable’s realism. We propose a new machine-learning-based paradigm for studying pictorial realism in an explainable way. Our framework assesses realism by measuring the similarity between clouds painted by artists noted for their skies, like Constable, and photographs of clouds. The experimental results of cloud classification show that Constable approximates more consistently than his contemporaries the formal features of actual clouds in his paintings. The study, as a novel interdisciplinary approach that combines computer vision and machine learning, meteorology, and art history, is a springboard for broader and deeper analyses of pictorial realism. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Abstract

    Rossby wave breaking (RWB) can be manifested by the irreversible overturning of isentropes on constant potential vorticity (PV) surfaces. Traditionally, the type of breaking is categorized as anticyclonic (AWB) or cyclonic (CWB) and can be identified using the orientation of streamers of high potential temperature (θ) and lowθair on a PV surface. However, an examination of the differences in RWB structure and their associated tropospheric impacts within these types remains unexplored. In this study, AWB and CWB are identified from overturning isentropes on the dynamic tropopause (DT), defined as the 2 potential vorticity unit (PVU; 1 PVU = 10−6K kg−1m2s−1) surface, in the ERA5 dataset during December, January, and February 1979–2019. Self-organizing maps (SOM), a machine learning method, is used to cluster the identified RWB events into archetypal patterns, or “flavors,” for each type. AWB and CWB flavors capture variations in theθminima/maxima of each streamer and the localized meridionalθgradient (∇θ) flanking the streamers. Variations in the magnitude and position of ∇θbetween flavors correspond to a diversity of jet structures leading to differences in vertical motion patterns and troposphere-deep circulations. A subset of flavors of AWB (CWB) events are associated with the development of strong surface high (low) pressure systems and the generation of extreme poleward moisture transport. For CWB, many events occurred in similar geographical regions, but the precipitation and moisture patterns were vastly different between flavors. Our findings suggest that the location, type, and severity of the tropospheric impacts from RWB are strongly dictated by RWB flavor.

    Significance Statement

    Large-scale atmospheric waves ∼15 km above Earth’s surface are responsible for the daily weather patterns that we experience. These waves can undergo wave breaking, a process that is analogous to ocean waves breaking along the seashore. Wave breaking events have been linked to extreme weather impacts at the surface including cold and heat waves, strong low pressure systems, and extreme precipitation events. Machine learning is used to identify and analyze different flavors, or patterns, of wave breaking events that result in differing surface weather impacts. Some flavors are able to generate notable channels of moisture that result in extreme high precipitation events. This is a crucial insight as forecasting of extreme weather events could be improved from this work.

     
    more » « less
  3. null (Ed.)
    Abstract An engaged scholarship project called “Snowflake Selfies” was developed and implemented in an upper-level undergraduate course at The Pennsylvania State University (Penn State). During the project, students conducted research on snow using low-cost, low-tech instrumentation that may be readily implemented broadly and scaled as needed, particularly at institutions with limited resources. During intensive observing periods (IOPs), students measured snowfall accumulations, snow-to-liquid ratios, and took microscopic photographs of snow using their smartphones. These observations were placed in meteorological context using radar observations and thermodynamic soundings, helping to reinforce concepts from atmospheric thermodynamics, cloud physics, radar, and mesoscale meteorology courses. Students also prepared a term paper and presentation using their datasets/photographs to hone communication skills. Examples from IOPs are presented. The Snowflake Selfies project was well received by undergraduate students as part of the writing-intensive course at Penn State. Responses to survey questions highlight the project’s effectiveness at engaging students and increasing their enthusiasm for the semester-long project. The natural link to social media broadened engagement to the community level. Given the successes at Penn State, we encourage Snowflake Selfies or similar projects to be adapted or implemented at other institutions. 
    more » « less
  4. Abstract On 8 February 2018, a supercell storm produced gargantuan (> 15 cm or > 6 inches in maximum dimension) hail as it moved over the heavily populated city of Villa Carlos Paz in Córdoba Province, Argentina, South America. Observations of gargantuan hail are quite rare, but the large population density here yielded numerous witnesses and social media pictures and videos from this event that document multiple large hailstones. The storm was also sampled by the newly installed operational polarimetric C-band radar in Córdoba. During the RELAMPAGO campaign, the authors interviewed local residents about their accounts of the storm, and uncovered additional social media video and photographs revealing extremely large hail at multiple locations in town. This article documents the case, including the meteorological conditions supporting the storm (with the aid of a high-resolution WRF simulation), the storm’s observed radar signatures, and three noteworthy hailstones observed by residents. These hailstones include a freezer-preserved 4:48-inch (11:38-cm) maximum dimension stone that was scanned with a 3D infrared laser scanner, a 7:1-inch (18-cm) maximum dimension stone, and a hailstone photogrammetrically estimated to be between 7:4 and 9:3 inches (18:8-23:7- cm) in maximum dimension, which is close to or exceeds the world record for maximum dimension. Such a well-observed case is an important step forward in understanding environments and storms that produce gargantuan hail, and ultimately how to anticipate and detect such extreme events. (Capsule Summary) Gargantuan hail fell in Argentina on 8 February 2018, including one hailstone that is possibly a world-record for maximum dimension. We document eyewitness and social media accounts of the hail, and analyze the parent storm and its environment. 
    more » « less